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Abstract. In [M2], Moore characterizes the amenability of automorphism groups of countable
ultrahomogeneous structures by a Ramsey-type property. We extend this result to automorphism
groups of metric Fraïssé structures, which encompass all Polish groups. As an application, we prove
that amenability is a Gδ condition.

Introduction

In recent years, there has been a flurry of activity relating notions linked to amenability of
groups on one side, and combinatorial conditions linked to Ramsey theory on the other side. In
this paper, we extend a result of Moore ([M2, theorem 7.1]) on the amenability of closed subgroups
of S∞ to general Polish groups. A topological group is said to be amenable if every continuous
action of the group on a compact Hausdorff space admits an invariant probability measure.

Moore’s result is the counterpart of a theorem of Kechris, Pestov and Todorčević ([KPT]) on
extreme amenability. A topological group is said to be extremely amenable if every continuous
action of the group on a compact Hausdorff space admits a fixed point. In the context of closed
subgroups of S∞, which are exactly the automorphism groups of Fraïssé structures, Kechris, Pestov
and Todorčević characterize extreme amenability by a combinatorial property of the associated
Fraïssé classes (in the case where its objects are rigid), namely, the Ramsey property. A class K
of structures is said to have the Ramsey property if for all structures A and B in K, for all integers
k, there is a structure C in K such that for every coloring of the set of copies of A in C with k
colors, there exists a copy of B in C within which all copies of A have the same color.

Thus, extreme amenability, which provides fixed points, corresponds to colorings having a
"fixed", meaning monochromatic, set. Amenability, on the other side, provides invariant mea-
sures. Since a measure is not far from being a barycenter of point masses, the natural mirror
image of the Ramsey property in that setting should be for a coloring to have a "monochromatic
convex combination of sets". Indeed, Tsankov (in an unpublished note) and Moore introduced a
convex Ramsey property and proved that a Fraïssé class has the convex Ramsey property if and
only if the automorphism group of its Fraïssé limit is amenable.

Besides, the Kechris-Pestov-Todorčević result was extended to general Polish groups by Melleray
and Tsankov in [MT1]. They use the framework of continuous logic (see [BBHU]) via the observa-
tion that every Polish group is the automorphism group of an approximately homogeneous metric
structure ([M1, theorem 6]), that is of a metric Fraïssé limit (in the sense of [MT1]; these were
built by Ben Yaacov in [B]). They define an approximate Ramsey property for classes of metric
structures and then show that a metric Fraïssé class has the approximate Ramsey property if and
only if the automorphism group of its Fraïssé limit is extremely amenable.

In this paper, we "close the diagram" by giving a metric version of Moore’s result. We replace
the classical notion of a coloring with the metric one (from [MT1]) to define a metric convex
Ramsey property, and we prove the exact analogue of Moore’s theorem (theorem 25):

Theorem 1. Let K be a metric Fraïssé class, K its Fraïssé limit and G the automorphism group
of K. Then G is amenable if and only if K satisfies the metric convex Ramsey property.
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From this result, we deduce some interesting structural consequences about amenability. First,
we improve the previously known characterization of amenability mentioned below.

If G is a topological group, all continuous actions of G on compact Hausdorff spaces can be
embraced in a single one: the action of G by translation on its greatest ambit S(G) (see [P1]).
In particular, the topological group G is amenable if and only if the action of G on S(G) admits
an invariant Borel probability measure. The greatest ambit of G is no other than the Samuel
compactification, which is characterized by the property that every right uniformly continuous
bounded function on G extends to a continuous function on S(G). Thus, amenability can be
characterized as follows.

Theorem 2. (see [P1, theorem 3.5.12]) Let G be a topological group. Then the following are
equivalent.

(1) G is amenable.
(2) There is an invariant mean1 on the space RUCB(G) of right uniformly continuous bounded

functions on G.
(3) For every positive integer N and for all f1, ..., fN in RUCB(G), there exists a mean Λ on

RUCB(G) that is invariant on the orbits of f1, ..., fN , i.e. for every j 6 N and for every g
in G, one has Λ(g−1 · fj) = Λ(fj).

(4) For every ε > 0, every finite subset F of G, every positive integer N and for all f1, ..., fN
in RUCB(G), there is a finitely supported probability measure µ on G such that for every
j 6 N and every h ∈ F , one has∣∣∣∣∫

G

fjdµ−
∫
G

fjd(h · µ)

∣∣∣∣ < ε.

The implications (4)⇒ (3)⇒ (2) follow from the weak*-compactness of the space of means on
RUCB(G) (which is a consequence of the Banach-Alaoglu theorem), while the implication (2)⇒ (4)
follows from an application of the Riesz representation theorem to the Samuel compactification
of G and the fact that every Borel probability measure on a compact space can be approximated
by finitely supported probability measures. Condition (4) is known as Day’s weak*-asymptotic
invariance condition.

In the course of the proof of theorem 1, we provide several reformulations of the metric convex
Ramsey property, among which the following (theorem 27).

Theorem 3. Let G be a Polish group. Then the following are equivalent.
(1) G is amenable.
(2) For every ε > 0, every finite subset F of G, every left uniformly continuous map f : G →

[0, 1], there exist elements g1, ..., gn of G and barycentric coefficients λ1, ..., λn such that for
all h, h′ ∈ F , one has ∣∣∣∣∣

n∑
i=1

λif(gih)−
n∑
i=1

λif(gih
′)

∣∣∣∣∣ < ε.

(3) For every ε > 0, every finite subset F of G, every f ∈ RUCB(G), there is a finitely
supported probability measure µ on G such that for every h in F , one has∣∣∣∣∫

G

fdµ−
∫
G

fd(h · µ)

∣∣∣∣ < ε.

1Positive linear form of norm 1.
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It constitutes a strengthening of Day’s weak*-asymptotic invariance condition for Polish groups:
to check that a Polish group is amenable, it suffices to verify Day’s condition for a single function.
This result was motivated by a similar result obtained by Moore for discrete groups ([M2, theorem
2.1]). Besides, the same is true for extreme amenability with multiplicative means.

It is interesting that to make this reduction from multiple functions to only one function, we
need to express the Polish group as the automorphism group of a metric Fraïssé structure (as per
[M1]) and then combine multiple colorings into one coloring, whereas it is unclear how to directly
combine finitely many right uniformly continuous functions on the group.

Applying the Riesz representation theorem to the Samuel compactification, as in theorem 2, we
obtain the following as a corollary (corollary 28).

Corollary 4. Let G be a Polish group. Then the following are equivalent.
(1) G is amenable.
(2) For every right uniformly continuous bounded function on G, there exists a mean on

RUCB(G) such that for all g ∈ G, one has Λ(g · f) = Λ(f).

Another advantage of theorems 1 and 3 is to express amenability in a finitary way, which allows
us to compute its Borel complexity. In [P1], it was shown that extreme amenability is equivalent to
a Ramsey-theoretic property called oscillation property, a slight reformulation of which turns out
to be a Gδ condition, as observed by Melleray and Tsankov in [MT2]. We prove that amenability
also is a Gδ condition (corollary 30).

From this, a Baire category argument leads to the following sufficient condition for a Polish
group to be amenable (corollary 32).

Corollary 5. Let G be a Polish group such that for every positive n ∈ N, the set

Fn = {(g1, ..., gn) ∈ Gn : 〈g1, ..., gn〉 is amenable (as a subgroup of G)}
is dense in Gn. Then G is amenable.

This is a slight strengthening of the fact that a Polish group whose finitely generated subgroups
are amenable is itself amenable (see [G, theorem 1.2.7]), and also admits a direct proof (see remark
33).

1. A bit of continuous logic

In this section, we briefly set up the framework of continuous logic and of metric Fraïssé classes.

Definition 6. • A relational continuous language L is a sequence of pairs (n, k), where
n is an integer and k a positive real number.
• If L is a relational continuous language, then an L-structure is a complete metric space

(M,d) endowed, for every l = (n, k) in L, with an n-ary map Rl : Mn → R which is
k-Lipschitz for the supremum metric on Mn. The maps Rl are called predicates.

Definition 7. Let L be a relational continuous language andM be an L-structure. An automor-
phism of M is an isometry of (M,d) that preserves all the predicates, that is, for every l = (n, k)
in L and every (x1, ..., xn) in Mn, one has

Rl(g(x1), ..., g(xn)) = Rl(x1, ..., xn).

The set of all automorphisms of M is called the automorphism group of M and is denoted by
Aut(M).

We turn Aut(M) into a topological group by endowing it with the topology of pointwise con-
vergence. If the structure M is separable, then Aut(M) is a Polish group.
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Definition 8. Let L be a relational continuous language and M and M ′ two L-structures.
• An embedding of M ′ into M is an isometric map h : M ′ → M that preserves all the
predicates.
• The structure M is said to be approximately ultrahomogeneous if for every positive ε,
every finite subset A of M and every embedding h of A into M , there exists an automor-
phism g of M such that for all a in A, one has d(g(a), h(a)) < ε.

In model-theoretic terms, a structure is approximately ultrahomogeneous if any two finite tuples
having the same quantifier-free type can be sent arbitrarily close to each other by an automorphism
of the full structure.

Melleray showed in [M1, theorem 6] that every Polish group can be realized as the automorphism
group of a separable approximately ultrahomogeneous metric structure. If M is such a structure,
its age, which is the class of all its finite substructures, satisfies good amalgamation properties.
Classes of finite metric structures that enjoy the same properties are called metric Fraïssé classes,
a precise definition of which can be found in [B] or [MT1]. A continuous version of the Fraïssé
construction was developed by Ben Yaacov in [B], ensuring that every such class is in fact the age
of a unique (up to isomorphism) separable approximately ultrahomogeneous structure, its Fraïssé
limit. For our purposes, however, we may simply take the following as a definition of a Fraïssé
class.

Definition 9. Let L be a countable relational continuous language. A class K of finite L-structures
is said to be ametric Fraïssé class if it is the age of a separable approximately ultrahomogeneous
L-structure K. In that case, K is called the Fraïssé limit of the class K.

Examples 10. • Every classical Fraïssé class can be seen as a metric one by endowing the
structures with the discrete metric.
• The class of finite metric spaces is a metric Fraïssé class: it is the age of the universal
Urysohn space U.

Remark 11. We could allow languages to contain function symbols; the reasoning would then
adapt to classes of finitely generated structures by considering finite generating sets for them.
Fraïssé limits then include the infinite-dimensional separable Hilbert space, the measure algebra
of [0, 1], Lp spaces.

Thus, every Polish group is the automorphism group of a Fraïssé limit. We will use this descrip-
tion of Polish groups to give combinatorial characterizations of amenability.

2. The metric convex Ramsey property

We use the notations of [MT1].

Definition 12. Let L be a relational continuous language, A and B two finite L-structures and
M an arbitrary L-structure.

• We denote by AM the set of all embeddings of A into M. We endow AM with the metric
ρA defined by

ρA(α, α′) = max
a∈A

d(α(a), α′(a)).

• A coloring of AM is a 1-Lipschitz map from (AM, ρA) to the interval [0, 1].
• We denote by

〈
AM

〉
the set of all finitely supported probability measures on AM. We will

identify embeddings with their associated Dirac measures.
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• If κ : AM→ [0, 1] is a coloring, we extend κ to
〈
AM

〉
linearly: if ν in

〈
AM

〉
is of the form

ν =
n∑
i=1

λiδαi , we set

κ(ν) =
n∑
i=1

λiκ(αi).

• Moreover, we extend composition of embeddings to finitely supported measures bilinearly.

Namely, if ν in
〈
AB
〉
and ν ′ in

〈
BM

〉
are of the form ν =

n∑
i=1

λiδαi and ν
′ =

m∑
j=1

λ′jδα′j , we

define

ν ′ ◦ ν =
m∑
j=1

n∑
i=1

λ′jλiδα′j◦αi .

• If ν is a measure in 〈BM〉, we denote by
〈
AM(ν)

〉
the set of all finitely supported measures

which factor through ν and by AM(ν) the set of those which factor through ν via an

embedding. More precisely, if ν ∈
〈
BM

〉
is of the form

n∑
i=1

λiδβi , we define

AM(ν) =
{
ν ◦ δα : α ∈ AB

}
and 〈

AM(ν)
〉

=
{
ν ◦ ν ′ : ν ′ ∈

〈
AB
〉}
.

Throughout the paper, K will be a metric Fraïssé class in a relational continuous language and
K will be its Fraïssé limit.

Definition 13. The class K is said to have the metric convex Ramsey property if for every
ε > 0, for all structures A and B in K, there exists a structure C in K such that for every coloring
κ : AC→ [0, 1], there is ν in 〈BC〉 such that for all η, η′ ∈ AC(ν), one has |κ(η)− κ(η′)| < ε.

Intuition. In the classical setting, the Ramsey property states that given two structures A and
B, we can find a bigger structure C such that whenever we color the copies of A in C, we can find
a copy of B in C wherein every copy of A has the same color. Here, it basically says that we can
find a convex combination of copies of B in C wherein every compatible convex combination of
copies of A has almost the same color (see figure 2).

Remark 14. One can replace the assumption η, η′ ∈ AC(ν) with the stronger one η, η′ ∈ 〈AC(ν)〉
in the above definition, as is done in [M2]. Indeed, the property is preserved under convex combi-
nations.

The following proposition states that the metric convex Ramsey property allows us to stabilize
any finite number of colorings at once.

Proposition 15. The following are equivalent.
(1) The class K has the metric convex Ramsey property.
(2) For every ε > 0, for all positive integers N ∈ N and all structures A and B in K, there

exists a structure C in K such that for all colorings κ1, ..., κN : AC → [0, 1], there is µ in
〈BC〉 such that for all j in {1, ..., N} and all η, η′ in AC(µ), one has |κj(η)− κj(η′)| < ε.

Remark. Condition (2) above is equivalent to the metric convex Ramsey property for colorings
into [0, 1]N , where [0, 1]N is endowed with the supremum metric. It follows that the metric convex
Ramsey property is equivalent to the same property for colorings taking values in any convex
compact metric space.
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A1

A′1

A′′1

A2

A′2

A′′2

2/3A1 + 1/3A2

2/3A′1 + 1/3A′2

2/3A′′1 + 1/3A′′2

(B1, 2/3) (B2, 1/3)

C

Figure 1. Black points are barycenters of two corresponding copies of A in B1 and
B2 with coefficients 2/3 and 1/3. The metric convex Ramsey property says that all
these points have almost the same color.

Proof. The second condition clearly implies the first. For simplicity, we prove the other implication
for N = 2; the same argument carries over for arbitrary N . Let A and B structures in K and
ε > 0. We apply the metric convex Ramsey property twice consecutively.

We find a structure C1 in K witnessing the metric convex Ramsey property for A, B and ε,
that is, if κ : AC1 → [0, 1] is a coloring, then there exists ν ∈

〈
BC1

〉
such that for all α, α′ in

AB, we have |κ(ν ◦ δα) − κ(νδα′)| < ε. Then we find a structure C in K witnessing the metric
convex Ramsey property for A, C1 and ε, that is, if κ : AC→ [0, 1] is a coloring, then there exists
ν ∈

〈
C1C

〉
such that for all α, α′ in AC1, we have |κ(ν ◦ δα)− κ(ν ◦ δα′)| < ε.

We now show that C has the desired property. To this aim, let κ1, κ2 : AC → [0, 1] be two
colorings. By definition of the structure of C, there exists ν ∈

〈
C1C

〉
such that for all α, α′ in

AC1, we have |κ1(ν ◦ δα)− κ1(ν ◦ δα′)| < ε.
We then lift the second coloring κ2 to κ̃2 : AC1 → [0, 1] by putting κ̃2(α) = κ2(ν ◦ δα). This

process corresponds to the classical going color-blind argument: here, instead of forgetting one
color, we forget all embeddings that are not channelled through C1 via ν. The map κ̃2 we obtain
is again a coloring. Therefore, we may apply our assumption on C1 to κ̃2: there exists ν1 in

〈
BC1

〉
such that for all α, α′ in AC1, we have |κ̃2(ν1 ◦ δα)− κ̃2(ν1 ◦ δα′)| < ε.

Then µ = ν ◦ ν1 is as desired. Indeed, let η, η′ ∈ AC(µ). There exist α, α′ ∈ AC1 such that
η = µ ◦ δα and η′ = µ ◦ δα′ . Then

|κ2(η)− κ2(η′)| = |κ2(µ ◦ δα)− κ2(µ ◦ δα′)|
= |κ2(ν ◦ ν1 ◦ δα)− κ2(ν ◦ ν1 ◦ δα′)|
= |κ̃2(ν1 ◦ δα)− κ̃2(ν1 ◦ δα′)|
< ε.

Moreover, whenever η, η′ ∈ AC(µ), they are in AC(ν) too, hence the assumption on ν yields that
|κ1(η)− κ1(η′)| < ε. �
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Remark 16. For the sake of simplicity, we state the results for only one coloring at a time; the
previous proposition will imply that we can do the same with any finite number of colorings.

We now give an infinitary reformulation of the metric convex Ramsey property, which is what
will be used in the proof of theorem 25 in showing that amenability implies the metric convex
Ramsey property.

Proposition 17. The following are equivalent.
(1) The class K has the metric convex Ramsey property.
(2) For every ε > 0, for all structures A and B in K and all colorings κ : AK → [0, 1], there

exists ν in 〈BK〉 such that for all η, η′ in AK(ν), one has |κ(η)− κ(η′)| < ε.

Proof. (1) ⇒ (2)] Fix ε > 0, A and B two structures in K and let C ∈ K witness the metric
convex Ramsey property for A, B and ε. We may assume that C is a substructure of K. Now
every coloring of AK restricts to a coloring of AC so, if ν is the measure given by C for a coloring
κ, then ν satisfies the desired property.

(2) ⇒ (1)] We use a standard compactness argument. Suppose that K does not satisfy the
metric convex Ramsey property. We can then find structures A, B in K and ε > 0 such that for
every C ∈ K, there exists a bad coloring κC of AC, that is, for all ν ∈

〈
BC
〉
, the oscillation of κC

on AC(ν) is greater than ε.
We fix an ultrafilter U on the collection of finite subsets of K such that for every finite D ⊆ K,

the set {E ⊆ K finite : D ⊆ E} belongs to U . We consider the map κ = lim
U
κC on AK defined by

κ(α) = t⇔ ∀r > 0, {C ⊆ K finite : κC(α) ∈ [t− r, t+ r]} ∈ U .

Note that the assumption on U implies that for all α ∈ AK, the set {C ⊆ K finite : α(A) ⊆ C} is
in U so κC(α) is defined U -everywhere and the above definition makes sense. Besides, since all the
κC are 1-Lipschitz, κ is too and is thus a coloring of AK. We prove that κ contradicts property
(2).

Let ν ∈
〈
BK
〉
and write ν =

n∑
i=1

λiδβi , with the βi’s in BK. Then, for all i ∈ {1, ..., n}, the

sets {C ⊆ K finite : βi(B) ⊆ C} belong to U and so does their intersection Uν . Furthermore,
the set AK(ν), which is the same as AC(ν) for any C in Uν , is finite — note that this isn’t true
of
〈
AK(ν)

〉
(so choosing the definition of remark 14 for the Ramsey property would require an

additional appeal to the compactness of
〈
AK(ν)

〉
). For every C in Uν , there exists η, η′ in AC(ν)

such that |κC(η) − κC(η′)| > ε. So there exist η, η′ in AK(ν) such that the set {C ⊆ K finite :
|κC(η)− κC(η′)| > ε} belongs to U . By definition of κ, this implies that |κ(η)− κ(η′)| > ε, which
shows that (2) fails for ν. As ν was arbitrary, this completes the proof. �

3. The metric convex Ramsey property for the automorphism group

Let G be the automorphism group of K.
In this section, we reformulate the metric convex Ramsey property in terms of properties of G.

Definition 18. Let A be a finite substructure of K. We define a pseudometric dA on G by

dA(g, h) = max
a∈A

d(g(a), h(a)).

We will denote by (G, dA) the induced metric quotient space.

Remark 19. The pseudometrics dA, for finite substructures A of K, generate the topology on G,
and hence also the left uniformity. For an introduction to uniformities, see for example [P1].



8 ADRIANE KAÏCHOUH

The pseudometric dA is the counterpart of the metric ρA on AK on the side of the group. More
specifically, as pointed out in [MT1, lemma 3.8], the restriction map ΦA : (G, dA) → (AK, ρA)
defined by g 7→ g�A is distance-preserving and its image ΦA(G) is dense in AK. As a consequence,
every 1-Lipschitz map f : (G, dA)→ [0, 1] extends uniquely, via ΦA, to a coloring κf of AK, while
every coloring κ of AK restricts to a 1-Lipschitz map fκ : (G, dA)→ [0, 1].

Proposition 20. The following are equivalent.
(1) The class K has the metric convex Ramsey property.
(2) For every ε > 0, every finite substructure A of K, every finite subset F of G and every

1-Lipschitz map f : (G, dA) → [0, 1], there exist elements g1, ..., gn of G and barycentric
coefficients λ1, ..., λn such that for all h, h′ in F , one has∣∣∣∣∣

n∑
i=1

λif(gih)−
n∑
i=1

λif(gih
′)

∣∣∣∣∣ < ε.

(3) For every ε > 0, every finite subset F of G, every left uniformly continuous map f : G →
[0, 1], there exist elements g1, ..., gn of G and barycentric coefficients λ1, ..., λn such that for
all h, h′ in F , one has ∣∣∣∣∣

n∑
i=1

λif(gih)−
n∑
i=1

λif(gih
′)

∣∣∣∣∣ < ε.

Remark 21. The finite subset F of G in condition (2) is the counterpart of the structure B in
the Ramsey property: by approximate ultrahomogeneity of the limit K, it corresponds, up to a
certain error, to the set of all embeddings of A into B.

Proof. (1) ⇒ (2)] We set B = A ∪
⋃
h∈F

h(A). Let κf be the unique coloring of AK that extends

f . We then apply proposition 17 to A, B, ε and κf : there is ν in
〈
BK
〉
such that for all α, α′ in

AB(ν), we have |κf (ν ◦ δα)− κf (ν ◦ δα′)| < ε.

Write ν =
n∑
i=1

λiδβi , with the βi’s in BK. Since the structure K is a Fraïssé limit, it is approx-

imately ultrahomogeneous. This implies that for each i in {1, ..., n}, there exists an element gi
of its automorphism group G such that ρB(gi, βi) < ε. It is straightforward to check, using the
triangle inequality and the 1-Lipschitzness of the coloring κf , that these gi’s and λi’s have the
desired property.

(2) ⇒ (3)] We approximate uniformly continuous functions by Lipschitz ones. More precisely,
let f : G→ [0, 1] be left uniformly continuous and ε > 0. There exists an entourage V in the left
uniformity UL(G) on G such that for all x, y in G, if (x, y) ∈ V , then |f(x) − f(y)| < ε. Besides,
remark 19 implies there exist a finite substructure A of K and r > 0 such that for all x, y in G, if
dA(x, y) < r, then (x, y) ∈ V .

Now, for a positive integer k, we can define a map fk : (G, dA)→ [0, 1] by

fk(x) = inf
y∈G

f(y) + kdA(x, y).

It is k-Lipschitz as the infimum of k-Lipschitz functions. Note also that fk is smaller than f .

Take k large enough, so that
3

k
< r and let x be any element of G. By definition of fk, there

exists an element y of G such that f(y) + kdA(x, y) 6 fk(x) + ε. Since both f and fk are bounded

by 1, this implies that for small enough ε, we have dA(x, y) 6
3

k
< r. Thus, the left uniform
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continuity of f gives that |f(x)− f(y)| < ε. But then, we have

|f(x)− fk(x)| = f(x)− fk(x) 6 f(x)− f(y)− kdA(x, y) + ε

6 f(x)− f(y) + ε

< 2ε.

We have therefore obtained a good uniform approximation of f by a Lipschitz function.

We then apply (3) to
fk
k
, which is 1-Lipschitz, and to

ε

k
: for every finite subset F of G, there

exist elements g1, ..., gn of G and barycentric coefficients λ1, ..., λn such that for all h, h′ ∈ F , we
have ∣∣∣∣∣

n∑
i=1

λi
1

k
fk(gih)−

n∑
i=1

λi
1

k
fk(gih

′)

∣∣∣∣∣ < ε

k

hence ∣∣∣∣∣
n∑
i=1

λifk(gih)−
n∑
i=1

λifk(gih
′)

∣∣∣∣∣ < ε.

Then, for all h, h′ ∈ F , the triangle inequality gives∣∣∣∣∣
n∑
i=1

λif(gih)−
n∑
i=1

λif(gih
′)

∣∣∣∣∣ < 3ε.

(3)⇒ (1)] Let A and B be two structures in K, let ε > 0 and let κ : AK→ [0, 1] be a coloring.
Since K is approximately ultrahomogeneous, for every α in AB, we may choose hα in G such that
ρA(hα, α) < ε. Let F be the (finite) set of all such hα’s.

Now consider the restriction fκ of the coloring κ to (G, dA). It is left uniformly continuous
from G to [0, 1]. We apply condition (3) to fκ, F and ε: there exist elements g1, ..., gn of G and
barycentric coefficients λ1, ..., λn such that for all hα, hα′ in F , one has∣∣∣∣∣

n∑
i=1

λifκ(gihα)−
n∑
i=1

λifκ(gihα′)

∣∣∣∣∣ < ε.

Set ν =
n∑
i=1

λiδgi ∈
〈
BK
〉
. Using the triangle inequality and the Lipschitzness of κ, it is now

straightforward to check that ν witnesses the metric convex Ramsey property for A, B and 3ε. �

Notice that conditions (3) and (4) do not depend on the Fraïssé class but only on its automor-
phism group.

By virtue of remark 16, the metric convex Ramsey property is equivalent to condition (3) for
any finite number of colorings at once. It is that condition which will imply amenability in theorem
25.

Moreover, if G is endowed with a compatible left-invariant metric, Lipschitz functions are uni-
formly dense in left uniformly continuous bounded ones (the proof is similar to that of the impli-
cation (2)⇒ (3) above), so we can replace left uniformly continuous maps by 1-Lipschitz maps in
condition (3): we obtain the following.

Corollary 22. Let d be any compatible left-invariant metric on G. Then the following are equiv-
alent.

• The class K has the metric convex Ramsey property.
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• For every ε > 0, every finite subset F of G, every 1-Lipschitz map f : (G, d)→ [0, 1], there
exist elements g1, ..., gn of G and barycentric coefficients λ1, ..., λn such that for all h, h′ in
F , one has ∣∣∣∣∣

n∑
i=1

λif(gih)−
n∑
i=1

λif(gih
′)

∣∣∣∣∣ < ε.

4. A criterion for amenability

Given a compact space X, we denote by P (X) the set of all Borel probability measures on X.
It is a subset of the dual space of continuous maps on X. Indeed, if µ is in P (X) and f is a

continuous function on X, we put µ(f) =

∫
X

fdµ. Moreover, if we endow P (X) with the induced

weak* topology, it is compact.
If G is a group that acts on X, then one can define an action of G on P (X) by

(g · µ)(f) =

∫
X

f(g−1 · x)dµ(x).

Definition 23. A topological group G is said to be amenable if every continuous action of G on
a compact Hausdorff space X admits a measure in P (X) which is invariant under the action of G.

Although amenability is not preserved under subgroups (not even closed subgroups), it is pre-
served when taking dense subgroups.

Proposition 24. A subgroup of a topological group is amenable (with respect to the induced
topology) if and only if such is its closure.

Proof. Let H be a dense subgroup of G. It is straightforward to show that that every continuous
action of H on a compact Hausdorff space extends to a continuous action of G. Thus, if G is
amenable, then so is H. �

We are now ready to prove the main theorem.

Theorem 25. Let K be a metric Fraïssé class, K its Fraïssé limit and G the automorphism group
of K. Then the following are equivalent.

(1) The topological group G is amenable.
(2) The class K has the metric convex Ramsey property.

Proof. (1) ⇒ (2)] Suppose G is amenable and let A, B be structures in the class K, ε > 0 and
κ0 : AK → [0, 1] a coloring. We show that there exists ν ∈

〈
BK
〉
such that for all α, α′ ∈ AB,

we have |κ0(ν ◦ δα) − κ0(ν ◦ δα′)| < ε, which will imply the metric convex Ramsey property (by
proposition 17). We adapt Moore’s proof ([M2, (6)⇒ (1) in theorem 7.1]) to the metric setting.

The group G acts continuously on the compact Hausdorff space [0, 1]
AK by g ·κ(α) = κ(g−1 ◦α).

Denote by Y the orbit of the coloring κ0 under this action and by X its closure, which is compact
Hausdorff. Note that all the functions in X are colorings as well. We consider the restriction of
the action to X: since G is amenable, there is an invariant probability measure µ on X.

The map α 7→
∫
X

κ(α)dµ(κ) is constant on AK. Indeed, the invariance of µ implies that it is

constant on every orbit of the action of G on AK. But, by the approximate ultrahomogeneity
of K, every such orbit is dense in AK, so our map is constant on the whole of AK because it is
continuous (even 1-Lipschitz). Let r denote this constant value.
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Besides, Y being dense in X, the collection of finitely supported probability measures on Y is
dense in P (X). In particular, there exist barycentric coefficients λ1, ..., λn and elements g1, ..., gn

of G such that for all α in AB, we have

∣∣∣∣∣
n∑
i=1

λiκ0(g
−1
i ◦ α)− r

∣∣∣∣∣ < ε.

Finally, we may assume that B is a substructure of K, and set βi = g−1i � B, for i in {1, ..., n},
and ν =

∑n
i=1 λiδβi ∈

〈
BK
〉
. Then ν as is desired. Indeed, if α, α′ are in AB, and thus in AK, we

have

|κ0(ν ◦ δα)− κ0(ν ◦ δα′)| =

∣∣∣∣∣
n∑
i=1

λiκ0(βi ◦ α)−
n∑
i=1

λiκ0(βi ◦ α′)

∣∣∣∣∣
6

∣∣∣∣∣
n∑
i=1

λiκ0(βi ◦ α)− r

∣∣∣∣∣+

∣∣∣∣∣r −
n∑
i=1

λiκ0(βi ◦ α′)

∣∣∣∣∣
=

∣∣∣∣∣
n∑
i=1

λiκ0(g
−1
i ◦ α)− r

∣∣∣∣∣+

∣∣∣∣∣r −
n∑
i=1

λiκ0(g
−1
i ◦ α′)

∣∣∣∣∣
< 2ε.

(2) ⇒ (1)] Conversely, suppose that K has the metric convex Ramsey property and let G act
continuously on a compact Hausdorff space X. We show that X admits an invariant probability
measure. Since P (X) is compact, it suffices to show that if f1, ..., fN : X → [0, 1] are uniformly
continuous with respect to the unique (see [P1, exercise 1.1.3]) uniformity on X, ε > 0 and F
is a finite subset of G, there exists µ in P (X) such that for all j in {1, ..., N} and all h in F ,
|h · µ(fj)− µ(fj)| < ε.

Fix x in X. For j in {1, ..., N}, we lift fj to a map f̃j : G→ [0, 1] by setting f̃j(g) = fj(g
−1 · x).

Since the action of G on X is continuous and X is compact, for all x in X, the map g 7→ g−1 · x
is left uniformly continuous (see [P1, lemma 2.1.5]). It follows that the map f̃j is left uniformly
continuous.

We then apply proposition 20 to F ∪ {1}, ε and f̃1, ..., f̃N to obtain barycentric coefficients
λ1, ..., λn and elements g1, ..., gn of G such that for all j in {1, ..., N}, for all h in F (and h′ = 1),
we have ∣∣∣∣∣

n∑
i=1

λif̃j(gih)−
n∑
i=1

λif̃j(gi)

∣∣∣∣∣ < ε.

Then µ =
∑n

i=1 λiδg−1
i ·x

is as desired. Indeed, let j ∈ {1, ..., N} and h ∈ F . We have

µ(fj) =
n∑
i=1

λifj(g
−1
i · x) =

n∑
i=1

λif̃j(gi)

and

h · µ(fj) =
n∑
i=1

λi(h · fj)(g−1i · x)

=
n∑
i=1

λifj(h
−1g−1i · x)

=
n∑
i=1

λif̃j(gih)
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so finally

|h · µ(fj)− µ(fj)| =

∣∣∣∣∣
n∑
i=1

λif̃j(gih)−
n∑
i=1

λif̃j(gi)

∣∣∣∣∣ < ε,

which completes the proof. �

Example 26. Let K be the class of finite sets with no additional structure. The Fraïssé limit of
K is the countable set N. It is well known that its automorphism group, S∞, is amenable, as the
union of the finite (hence amenable) symmetric groups is dense in S∞ (see e.g. [BdlHV, proposition
G.2.2.(iii)]), but not extremely amenable ([P2, theorem 6.5]). In fact, the class of finite sets has
the classical Ramsey property (it follows from the Ramsey theorem [R]), but since finite sets are
not rigid (every permutation is an automorphism), the Kechris-Pestov-Todorčević result does not
apply. However, we can still use this classical Ramsey property to recover the amenability of S∞:
we circumvent the problem of non-rigidity by averaging the colors of all permutations of the small
structure to obtain the convex Ramsey property.

More precisely, let A be a finite set in K. An embedding of A into N is given by its image, which
is a copy of A in N, together with an automorphism of A, sending A to its copy A′. Let now B
be another structure in K, κ : AN→ [0, 1] be a coloring and ε > 0. Without loss of generality, we
may assume that the coloring κ takes its values in a finite set {1, ..., k} for a large enough k.

For each automorphism σ of A, consider the coloring κσ of the set
(N
A

)
of copies of A in N

defined as follows. For each copy A′ of A in the Fraïssé limit, κσ(A′) is the color that κ gives
to the embedding defined by A′ and σ. Apply the Ramsey property to each coloring κσ to get a
copy Bσ of B in N such that κσ is constant on the set

(
Bσ
A

)
of all copies of A in Bσ. Then the

isobarycenter of these structures Bσ is the desired measure.
We do not know if this technique generalizes to other nonrigid classes.

5. Structural consequences

As a consequence of theorem 25, of proposition 20 and of the fact that every Polish group is
the automorphism group of some metric Fraïssé structure ([M1, theorem 6]), we obtain the follow-
ing intrinsic characterization of amenability (and its reformulation in terms of finitely supported
measures).

Theorem 27. Let G be a Polish group. Then the following are equivalent.
(1) G is amenable.
(2) For every ε > 0, every finite subset F of G, every left uniformly continuous map f : G →

[0, 1], there exist elements g1, ..., gn of G and barycentric coefficients λ1, ..., λn such that for
all h, h′ ∈ F , one has ∣∣∣∣∣

n∑
i=1

λif(gih)−
n∑
i=1

λif(gih
′)

∣∣∣∣∣ < ε.

(3) For every ε > 0, every finite subset F of G, every f ∈ RUCB(G), there is a finitely
supported probability measure µ on G such that for every h in F , one has

|µ(f)− (h · µ)(f)| < ε.

The equivalence of (2) and (3) follows from the fact that inversion exchanges left and right
uniformly continuous functions.

We recognize Day’s weak*-asymptotic invariance condition with only one function from RUCB(G)
needed to check the amenability of G.

Corollary 28. Let G be a Polish group. Then the following are equivalent.
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(1) G is amenable.
(2) For every right uniformly continuous bounded function on G, there exists a mean on

RUCB(G) such that for all g ∈ G, one has Λ(g · f) = Λ(f).

Proof. (1) ⇒ (2)] If G is amenable, then the action of G on its Samuel compactification S(G)
admits an invariant Borel probability measure µ. The integral against µ gives rise to an invariant
mean on the space of all continuous functions on S(G). But continuous functions on the Samuel
compactification of G are exactly right uniformly continuous bounded ones, hence condition (2) is
satisfied.

(2) ⇒ (1)] Since RUCB(G) is exactly the space of all continuous functions on the Samuel
compactification S(G), we can apply Riesz representation theorem: for each f in RUCB(G), there
exists a Borel probability measure on S(G) such that for all g in G, we have µ(g · f) = µ(f).

But since G is dense in S(G), every Borel probability measure on S(G) can be approximated
by finitely supported measures on G. Thus, for every ε > 0, every finite subset F of G, every
f ∈ RUCB(G), there is a finitely supported probability measure µ on G such that for every h in
F , one has

|µ(f)− (h · µ)(f)| < ε.

Theorem 27 then yields that G is amenable. �

Similarly, corollary 22 gives the Lipschitz counterpart of theorem 27.

Theorem 29. Let G be a Polish group and d a left-invariant metric on G which induces the
topology. Then the following are equivalent.

(1) The topological group G is amenable.
(2) For every ε > 0, every finite subset F of G, every 1-Lipschitz map f : (G, d) → [0, 1],

there exist elements g1, ..., gn of G and barycentric coefficients λ1, ..., λn such that for all
h, h′ ∈ F , one has ∣∣∣∣∣

n∑
i=1

λif(gih)−
n∑
i=1

λif(gih
′)

∣∣∣∣∣ < ε.

It follows that amenability is a Gδ condition in the following sense (see [MT2, theorem 3.1]).

Corollary 30. Let Γ be a countable group and G a Polish group. Then the set of representations
of Γ in G whose image is an amenable subgroup of G is Gδ in the space of representations of Γ in
G, endowed with the topology of pointwise convergence.

Proof. Let π be a homomorphism from Γ to G and let d be a compatible left-invariant metric
on G. By proposition 24, the image π(Γ) is amenable if and only if such is its closure, and its
closure is Polish (as a closed subset of a Polish space). Then, by virtue of theorem 29, π(Γ) is
amenable if and only if for every ε > 0, every finite subset F of π(Γ), every 1-Lipschitz function
f : (π(Γ), d) → [0, 1], there exist elements g1, ..., gn of π(Γ) and barycentric coefficients λ1, ..., λn
such that for all h, h′ in F , one has∣∣∣∣∣

n∑
i=1

λif(gih)−
n∑
i=1

λif(gih
′)

∣∣∣∣∣ < ε.

Using the same compactness argument as in proposition 17, one can show that the condition is
equivalent to the following.
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∀ε > 0,∀F ⊆ π(Γ) finite ,∃K ⊆ π(Γ) finite ,∀f : (KF, d)→ [0, 1] 1-Lipschitz,

∃k1, ..., kn ∈ K, ∃λ1, ..., λn,∀h, h′ ∈ F,

∣∣∣∣∣
n∑
i=1

λif(kih)−
n∑
i=1

λif(kih
′)

∣∣∣∣∣ < ε.

It is easily seen that this is again equivalent to the following.

∀ε > 0,∀F ⊆ Γ finite,∃K ⊆ Γ finite,

(∗)


∀f : KF → [0, 1] such that ∀γ, γ′ ∈ KF, |f(γ)− f(γ′)| 6 d(π(γ), π(γ′)),

∃k1, ..., kn ∈ K, ∃λ1, ..., λn,∀h, h′ ∈ F,

∣∣∣∣∣
n∑
i=1

λif(kih)−
n∑
i=1

λif(kih
′)

∣∣∣∣∣ < ε.

We now prove that, if ε, F and K are fixed, the set of representations π satisfying condition (∗)
above is open, which will imply that the condition is indeed Gδ. We prove that its complement
is closed. To that aim, take a sequence (πk) of representations in the complement that converges
to some representation π. Let fk : KF → [0, 1] witness that πk is in the complement. Since
KF is finite, maps from KF to [0, 1] form a compact set so we may assume that (fk) converges
to some f . Since being Lipschitz is a closed condition, f also satisfies that for all γ, γ′ in KF ,
|f(γ)− f(γ′)| 6 d(π(γ), π(γ′)).

By the choice of fk, for all k1, ..., kn in K and all λ1, ..., λn, there exists hk, h′k in F such that∣∣∣∣∣
n∑
i=1

λifk(kihk)−
n∑
i=1

λifk(kih
′
k)

∣∣∣∣∣ > ε.

Since F is finite, we may again assume that there are h and h′ in F such that for all k, we have
hk = h and h′k = h′. We then take the limit of the above inequality to get that∣∣∣∣∣

n∑
i=1

λif(kih)−
n∑
i=1

λif(kih
′)

∣∣∣∣∣ > ε,

which implies that π does not satisfy condition (∗) either, and thus completes the proof. �

Remark 31. The same argument works if, instead of condition (2) of theorem 29, we use a
version of Day’s weak*-asymptotic invariance condition with Lipschitz maps. Thus, corollary 30
holds more generally for all topological groups.

This yields the following criterion for amenability, which can however be obtained without the
use of Ramsey theory.

Corollary 32. Let G be a Polish group such that for every positive n in N, the set

Fn = {(g1, ..., gn) ∈ Gn : 〈g1, ..., gn〉 is amenable}
is dense in Gn. Then G is amenable.

Proof. We use a Baire category argument. By virtue of the above corollary applied to Γ = Zn
(identifying Hom(Zn, G) with Gn), for all n, the set Fn is dense Gδ in Gn. By the Baire category
theorem, the set

F = {(gk) ∈ GN : ∀n, (g1, ..., gn) ∈ Fn}
is dense and Gδ too. Besides, the set of sequences which are dense in G is also dense and Gδ. Then
the Baire category theorem gives a sequence (gk) in their intersection. Thus, the group generated
by the gk’s is dense and amenable, hence so is G. �
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Note that since compact Hausdorff groups are amenable, it follows in particular that a group in
which the tuples that generate a compact subgroup are dense is amenable.

Remark 33. The criterion of corollary 32 can also be proven directly using the following com-
pactness argument. Let G act continuously on a compact Hausdorff space X. For every finite
subset F of G and every entourage V in the uniformity on P (X), we approximate the elements of
F by a tuple in some Fn to find a measure µF,V in P (X) which is V -invariant by every element
of F . Since P (X) is compact, the net {µF,V } admits a limit point, which is invariant under the
action of G.

Note that, in view of this direct argument, it is enough to ask that the set of tuples which
generate a subgroup that is included in an amenable one be dense.

The same argument works with extreme amenability as well and it allows to slightly simplify the
arguments of [MT2]: to show that the groups Iso(U), U(H) and Aut(X,µ) are extremely amenable,
Melleray and Tsankov use their theorem 7.1 along with the facts that extreme amenability is a
Gδ property and that Polish groups are generically ℵ0-generated. This is not necessary, as the
core of their proof is basically the above criterion: in each case, they prove that the set of tuples
which generate a subgroup that is contained in an extremely amenable group (some L0(U(m)), as
it happens) is dense.

6. Concluding remarks

One would expect the characterization of theorem 25 to yield new examples of amenable groups
or at least simpler proofs of the amenability of known groups. However, proving the convex Ramsey
property for a concrete Fraïssé class is quite technical and difficult. Indeed, apart from the class of
(discrete!) finite sets (example 26), we have no example of a metric class which satisfies the metric
convex Ramsey property but not the metric (approximate) Ramsey property.

Maybe our characterization can be used the other way around, that is, to find new Ramsey-
type results. There is also hope that the criterion of corollary 32 may lead to (new) examples of
amenable groups.
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ance as well as for various improvements on this paper. I am also very grateful to Lionel Nguyen
Van Thé for insightful discussions about Ramsey theory and his careful proofreading, and to
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